Геометрия, опубликовано 2018-08-22 23:11:29 by Гость
ГЕОМЕТРИЯ! Радиус вписанной в равносторонний треугольник окружность равен 8 см. Найдите радиус описанной окружности и периметр этого треугольника.
Ответ оставил Гость
Радиус вписанной окружности перпендикулярен к стороне треугольника и образует с радиусом описанной окружности прямоугольный треугольник, в котором острый угол (при вершине равностороннего треугольника) равен 30 градусам. Тогда катет напротив угла в 30 градусов (т.е. радиус вписаной окружности) равен половине гипотенузы (т.е. половине радиуса описанной окружности): R = 2r = 16. По т.Пифагора найдем второй катет в прямоуг. треугольнике: √(16²-8²) = √(256-64) = √192 = 8√3
Тогда сторона равностор. треугольника равна 2*8√3 = 16√3
Периметр равен 3*16√3 = 48√3
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.
