Геометрия, опубликовано 2018-08-22 00:02:17 by Гость
В ромб ABCD вписана окружность. Точка касания G окружности делит сторону ромба AB на отрезки AG и GB, соответственно равные 2 см и 8 см. Найдите радиус вписанной окружности.
Ответ оставил Гость
Обозначим центр вписанной окружности как O. Cторона AB перпендикулярна OG (касается окружности), треугольники AGО и BGО - прямоугольные. Треугольник AOB прямоугольный, т.к. диагонали ромба пересекаются под прямым углом.
AG = 8
BG = 2
AB = 8+2 = 10
OА = a
OB = b
OG = r
a² + b² = 100
a² = r² + 64
b² = r² + 4
Сложим уравнения:
a² + b² = 2r² + 68
r = = 4
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.
