Аватар
Геометрия, опубликовано 2018-08-22 00:02:17 by Гость

В ромб ABCD вписана окружность. Точка касания G окружности делит сторону ромба AB на отрезки AG и GB, соответственно равные 2 см и 8 см. Найдите радиус вписанной окружности.

Аватар
Ответ оставил Гость

Обозначим центр вписанной окружности как O. Cторона AB перпендикулярна OG (касается окружности), треугольники AGО и BGО - прямоугольные. Треугольник AOB прямоугольный, т.к. диагонали ромба пересекаются под прямым углом.

AG = 8
BG = 2
AB = 8+2 = 10
OА = a
OB = b
OG = r

a² + b² = 100

a² = r² + 64
b² = r² + 4
Сложим уравнения:
a² + b² = 2r² + 68

r =  /sqrt{/frac{100-68}{2}} = 4




Вопрос
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.