Аватар
Геометрия, опубликовано 2018-08-22 00:43:16 by Гость

Высоты, проведенные из вершин А, В и С треугольника АВС, равны 20, 15 и 12 соответственно. а) Докажите, что треугольник АВС прямоугольный. б) Найдите длину биссектрисы треугольника, проведенной из вершины С.

Аватар
Ответ оставил Гость

В прямоугольном треугольнике две высоты совпадают с катетами, это 20 и 15. Тогда гипотенуза c=(20^2+15^2)^(1/2)=25, высота, опущенная на с Hc=ab/c=12 данная в условии. Искомая биссектриса bc , проведенная из вершины прямого угла C выражается известной формулой
bс=2b*a*cos(π/4)/(a+b)=2*15*20/1,41*(15+20).=12,15

Вопрос
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.