Геометрия, опубликовано 2018-08-22 00:53:10 by Гость
Определите отношение площади трапеции со сторонами a,a,a и 2a к площади правильного треугольника со стороной равной нижнему основанию трапеции. Варианты ответов: корень из 6/3; 5/6; 3/4; корень из 3/4
Ответ оставил Гость
Трапеция получается равнобедренная: боковые стороны равны а, верхнее основание равно а, нижнее основание равно 2а.
Высота равнобедренной трапеции, опущенная из вершины на большее основание, делит его на два отрезка, один из которых равен полусумме оснований (а+2а)/2=1,5а, а другой — полуразности оснований (2а-а)/2=0,5а.
Значит высота h=√(а²-(0,5а)²)=а√3/2
Площадь трапеции Sт=(а+2а)/2*h=3а/2*а√3/2=3√3*а²/4
Правильный треугольник со сторонами 2а.
Площадь треугольника Sтр=√3*(2а)²/4=√3а²
Отношение Sт:Sтр=3√3*а²/4 : √3*а²=3/4.
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.
