Геометрия, опубликовано 2018-08-22 00:54:21 by Гость
Дан прямоугольник ABCD. Из вершины А проведена диагональ. Из вершины Д на сторону ВС проведена линия(в точку Е)),которая пересекает диагональ в точке О , при чем ЕО в два раза меньше ОД.Найти площадь треугольника СОЕ,если площадь прямоугольника АВСД 60.
Ответ оставил Гость
Обозначим АД = ВС = а и АВ = СД = Н
Тогда площадь прямоугольника Sпр = аН = 60
ΔЕОС подобен ΔДОА, т.к. все три угла одного соответственно равны трём углам другого. Коэффициент подобия определяется из соотношения сторон ОЕ : ОД = 1/2 (по условию). Итак, коэффициент подобия к = 0,5 тогда и высоты этих треугольников относятся как 1 : 2.
То есть высота ΔЕОС равна 1/3 H, а высота ΔАОД равна 2/3 Н.
Соответственно сторона ЕС = 0,5 АД = 0,5а
Площадь ΔСОЕ = 0,5 ·0,5а · Н/3 = аН/12
Получилось, что площадь ΔСОЕ в 12 раз меньше площади прямоугольника АВСД
S(ΔСОЕ) = 60 : 12 = 5
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.
