Геометрия, опубликовано 2018-08-22 01:30:55 by Гость
В четырехугольнике ABCD диагонали AC и BD пересекаются в точке O. SBOC = 20 см2 , SCOD = 40 см2 , SAOD = 60 см2 , AB = 12 см, OA = 10 см, ∠AOB > 31◦ . Найдите ∠BAO.
Ответ оставил Гость
S(BAO)/S(BOC)=OA/OC=S(AOD)/S(COD) потому что площади треугольников с равными высотами относятся так же, как их основания. Отсюда
S(BAO)/20=60/40, т.е. S(BAO)=30=0,5*12*10*sin(∠BAO), т.е. sin(∠BAO)=1/2. Это значит, что ∠BAO=30° или 150°. Но 150° быть не может, так как тогда ∠AOВ
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.
