Геометрия, опубликовано 2018-08-22 01:47:08 by Гость
Помогите решить задачу: Четырехугольник ABCD вписан в окружность радиуса √159 прямые содержащие противолежащие стороны пересекаются в точках P и Q расстояния от этих точек до центра окружности соответственно равно 15 и 17 найдите длину отрезка PQ. Заранее огромное спасибо.
Ответ оставил Гость
Лемма. Если из точки P к окружности проведены две секущие, одна из которых пересекает окружность в точках A и B, а вторая в точках C и D, то . Это легко следует из подобия по двум углам треугольников PBC и PDA.
Решение исходной задачи. Обозначим центр окружности О, P - точка пересечение лучей AB и DC, Q - точка пересечения лучей BC и AD, PO=15, QO=17, радиус . Пусть также М - точка пересечения окружностей описанных около треугольников BCP и DCQ. Тогда
Следовательно , т.е. точка М лежит на отрезке PQ.
Теперь если провести секущую из P через О, то по лемме получаем:.
А также
Аналогично, если провести секущую из Q через О, то.
А также
Таким образом, откуда PQ=14.
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.
