Аватар
Геометрия, опубликовано 2018-08-22 02:37:36 by Гость

Помогите! 1) Докажите, что угол между прямыми, содержащими биссектрисы острых углов прямоугольного треугольника, равен 45 градусов. 2) В треугольнике ABC угол A = 15 градусов, угол B = 75 градусов, CH = 2 - высота. Найдите AB

Аватар
Ответ оставил Гость

1)Дан прямоугольный треугольный треугольник, угол В прямой (равен 90 градусов).Сумма острых углов прямоугольного треугольника равна 90 градусовт.е. угол САВ+уголВСА=90 градусов.АЕ и CD -биссектриссы острых углов.По определению биссектрисы делят угол пополам, поэтомуугол CAE=угол BAE=1/2 *угол ВАСугол ACD=угол BCD=1/2*угол *ВСА остюда угол CAE+угол ACD=1/2 *угол ВАС+1/2*угол *ВСА==1/2*(угол САВ+уголВСА)=1/2*90 градусов=45 градусов Сумма углов треугольника равна 180 градусов, поєтомуугол AOC=180-угол-CAE - угол ACD=180-(угол CAE+угол ACD)=180-45=135 градусовСумма смежных углов равна 180 градусов, поэтомуугол AOD=180-135=45 градусов - это один из углов образуемых при пересечении биссектрис острых данного прямоугольного треугольника,таким образом мы доказали требуемое утверждение. Доказано

Вопрос
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.