Аватар
Геометрия, опубликовано 2018-08-22 02:59:29 by Гость

Планиметрия, 25+13 БАЛЛОВ! В произвольном треугольнике даны сторона a, угол A и радиус вписанной окружности r. Выразить стороны b, c.

Аватар
Ответ оставил Гость

Площадь равнаS=r*a+r*(b+c)=b*c*sin(A)/2
По теорем косинусов а*a=b*b+c*c-2bc*cos(A)
Есть два уравнения и два неизвестных.
Перепишем теорему косинусов так
а*а=(b+c)^2-2bc(cos(A)+1)
(b+c)=bc*sin(A)/2r-a

ПОПРОБУЕМ:

 
а*а=(b+c)^2-2bc(cos(A)+1)
(b+c)=bc*sin(A)/2r-a
 
(b+c)=x
bc=(xr+ar)/sinA
a*a=x*x-2*(xr+ar)*(cosA+1)/sinA
a*a=x*x-2(x+a)r*ctg(A/2)
x*x-2x *ctgA/2r=a*a+2a*r*ctgA/2
(x-ctg(A/2)*r)^2=a*a+2a*r*ctgA/2+(ctg(A/2)*r)^2
(x-ctg(A/2)*r)^2=(a+ctg(A/2)*r)^2
x=a+2r*ctg(A/2)
(b+c)= a+2r*ctg(A/2)
  (вот это, наверное, ввиду простоты выражения , можно было бы и из каких-то иных геометрических соображений получить)
 (b-c)^2=b*b-2bc+c*c= (a+2r*ctg(A/2))^2-4(xr+ar)/sinA
 (b-c)=sqrt((a+2r*ctg(A/2))^2-4(xr+ar)/sinA))

 b= (a+2r*ctg(A/2))/2+ sqrt((a+2r*ctg(A/2))^2-4(xr+ar)/sinA))/2
 c=(a+2r*ctg(A/2))/2- sqrt((a+2r*ctg(A/2))^2-4(xr+ar)/sinA))/2
 
 Конечно, когда решали квадратное уравнение, могли и другие корни посмотреть
Получили бы еще и симметричное решение. b  и  c  равноправны и их можно поменять местами.
Извините , за некрасивый ответ. Надеюсь, правильный.



Вопрос
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.