Геометрия, опубликовано 2018-08-22 03:58:04 by Гость
Дан шестиугольник A1A2A3A4A5A6. Его стороны А1А2 и А4А5, А2А3 и А5А6, А3А4 и А6А1, попарно равны и параллельны. Используя центральную симметрию, докажите, что диагонали А1А4 и А2А5, А3А6 данного шестиугольника пересекаются в одной точке. Блин срочняк надо, помогите плиз!!!
Ответ оставил Гость
Треугольники, образованные парными боковыми сторонами и парой из указанных диагоналей, равны. Например, треугольник А1А2О = треугольник А4А5О, где О - точка пересечения А1А4 и А2А5 => обе эти диагонали в точке их пересечения делятся пополам. И эта пара сторон и пара диагоналей центрально симметрична относительно О. Аналогично и для другой пары сторон. Мы видим, что и они делятся точкой пересечения пополам, то есть эта точка совпадает с О. Поэтому у фигуры есть центр симметрии, и все диагонали, соединяющие центрально симметричные вершины (А1 и А4, А2 и А5, А4 и А6), обязательно проходят через центр симметрии и делятся им пополам.
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.
