Аватар
Геометрия, опубликовано 2018-08-22 04:23:58 by Гость

Дан треугольник с вершинами А(3;-2), В(3;0), С(-1;2). Вычислить угол между медианой ВД и стороной АС

Аватар
Ответ оставил Гость

Точка Д - середина отрезка АС,  ее координаты  х=(3-1)/2=1,  у=(-2+2)/2=0  Д(1,0)
Найдем длины отрезков  ВД=√(3-1)²+(0-0)²=2,  ВС=√(3+1)²+(0-2)²=2√5,
ДС=√(1+1)²+(0-2)²=2√2
по теореме косинусов  ВС²=ВД²+ДС²-2ВС*ВД*cosВДС
cosBDC=(ВД²+ДС²-ВС²)/2ВС*ВД
cosBDC=(4+8-20)/(2*2√5*2)=-8/(8√5)=-√5/5
угол между медианой и стороной АС равен arccos√5/5,  т.к. угол между прямыми  - острый.

Вопрос
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.