Геометрия, опубликовано 2018-08-22 04:26:07 by Гость
Из точки О-точки пересечения медиан равностороннего треугольника АВС-проведен перпендикуляр ОМ до плоскости треугольника,найти угол наклона прямой МА к плоскости АВС,если ОМ=АВ=6
Ответ оставил Гость
Точка О - центр пересечения медиан равностороннего треугольника. она же центр описанной окружности
R = OA = AB/корень(3)=6/корень(3)
в треугольнике АОМ
ОМ = 6
OA = 6/корень(3)
значит угол МАО = arctg(MО/ОА)=arctg(6/(6/корень(3)) = arctg(корень(3)) = 60
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.
