Аватар
Геометрия, опубликовано 2018-08-22 04:50:04 by Гость

Точка K — середина боковой стороны CD трапеции ABCD. Докажите, что площадь треугольника KAB равна половине площади трапеции.

Аватар
Ответ оставил Гость

К лежит на средн. линии. Опустим высоты к основаниям а и в эти высоты равны между собой и равны половине высоты  h трапеции
площадь треуг КАВ= плошади трап. минус площади треуг. ВСК и АКД
S (BCR)+ S (AKD)=  (a*h/2)/2+(b*h/2)/2= 1/2((a+b)*h/2)
в скобках как раз сумма этих треугольников, которая равна половине площади трапеции. Значит, на КАВ приходится другая половина.

Вопрос
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.