Аватар
Геометрия, опубликовано 2018-08-22 04:53:20 by Гость

Сторона основания правильной четырёхугольной призмы равна а, диагональ призмы образует с плоскостью основания угол 45 градусов. Найдите: а) диагональ призмы; б) угол между диагональю призмы и плоскостью боковой грани; в) площадь боковой поверхности призмы; г) площадь сечения призмы плоскостью, проходящей через сторону нижнего основания и противоположную сторону верхнего основания. Решение должно быть с рисунком и подробным объяснением.

Аватар
Ответ оставил Гость

a) Найдем диагональ основания:
d1=√(a²+a²)=a√2
еперь найдем диагональ призмы:
d=d1/cos45°=a√2*2/√2=2a
б)Найдем боковое ребро призмы, так как диагональ призмы наклонена кплоскости основания под углом 45°, то боковое ребро равно h=d1=a√2
Найдем диагональ боковой грани:
d2=√(a²+2a²)=a√3
Тогда угол между диагоналями d и d2 равен 
cosα=d2/d=(a√3)/(2a)=√3/2
α=30°
в) Найдем площадь боковой поверхности призмы:
S=P*h=4a*a√2=4a²√2
г) Площадь данного сечения равна:
S1=a*d2=a*a√3=a²√3

Вопрос
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.