Доказать теорему второй и третий признаки равенства треугольника
Второй признак равенства треугольников. Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны
Пусть Δ ABC и таковы, что По аксиоме 4.1 существует равный Δ ABC, с вершиной на луче и с вершиной в той же полуплоскости, где и вершина Так как то вершина совпадает с вершиной Так как и то луч совпадает с лучом а луч совпадает с лучом Отсюда следует, что вершина совпадает с вершиной Итак, совпадает с треугольником а значит, равен Δ ABC. Теорема доказана.
Третий признак равенства треугольников. Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны Пусть Δ ABC и Δ A1B1C1 таковы, что AB = A1B1; BC = B1C1 ; AC = A1C1. Доказательство от противного.
Пусть треугольники не равны. Отсюда следует, что одновременно. Иначе треугольники были бы равны по первому признаку.
