Геометрия, опубликовано 2018-08-22 05:57:56 by Гость
Ребро куба АВСДА1В1С1Д1 равно а. Постройте сечение куба, проходящее через середины ребер АА1, В1С и СД, и найдите площадь этого сечения. Можно без площади. Просто постройте сечение пожалуйста.
Ответ оставил Гость
Расстояние м/у прямыми CC1 и BD равно (a *корень из 2)/2.
В основании куба лежит квадрат ABCD. BD - это гипотенуза прямоугольного треугольника BDC с катетами a. Она равна корень из а в квадрате плюс а в квадрате, т.е. а корней из двух. А расстояние м/у вашими прямыми будет равно АС пополам. Но так, как AC равно BD, то BD делим на 2. И получаем (а*корень из 2)/2.
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.
