Геометрия, опубликовано 2018-08-22 06:06:16 by Гость
47 БАЛЛОВ! Докажите, что если основание и медиана,проведенная к боковой стороне одного равнобедренного треугольника, равны основанию и медиане, проведенной к боковой стороне другого равнобедренного треугольника, то эти треугольники равны. Заранее огромное спасибо.
Ответ оставил Гость
В равнобедренном треугольнике медианы, проведенные к боковым сторонам, равны.
Доказательство: Пусть АБВ - равнобедренный треугольник, АК и БЛ - его медианы. Тогда треугольники АКБ и АЛБ равны по второму признаку равенства треугольников. У них сторона АБ общая, стороны АЛ и БК равны как половины боковых сторон равнобедренного треугольника, а углы ЛАБ и КБА равны как углы при основании равнобедренного треугольника. Так как треугольники равны, их стороны АК и ЛБ равны. Но АК и ЛБ - медианы равнобедренного треугольника, проведённые к его боковым сторонам.
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.
