Аватар
Геометрия, опубликовано 2018-08-22 07:16:43 by Гость

В равнобедренном треугольнике боковая сторона равна 40, а радиус описанной окружности равен 25. Найдите радиус вписанной окружности в данный треугольник

Аватар
Ответ оставил Гость

Если провести радиусы к вершинам треугольника, то получится равнобедренный треугольник со сторонами А=25,В=25,С=40.
Высота этого треугольника(пусть будет Н) и есть искомый радиус(перечерти отдельно треугольник и проведи высоту). Т.к. треугольник равнобедренный, то высота, будет являться медианой(делит сторону на 2 равные части), следует, что сторона СН=20. Мы имеем прямоугольный треугольник АВН. нам неизвестно ВН (т.е. искомый радиус). Найдем его по теореме Пифагора 
25^2=x^2+20^2
x=15

Вопрос
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.