Аватар
Геометрия, опубликовано 2018-08-22 09:21:46 by Гость

Высота АН и медиана АМ треугольника АВС делят угол ВАС на р равные части, причем точка Н лежит между точками В и М. Из точки М опущен перпендикуляр МК на сторону АС. а) Докажите, что МК=ВН. б) Найдите углы треугольника АВС.

Аватар
Ответ оставил Гость

A) В треугольнике ABM AH - высота и биссектриса. Поэтому это равнобедренный треугольник, и BH = HM (то есть в ЭТОМ треугольнике AH еще и медиана).
В треугольнике AHC AM - биссектриса, поэтому точка M равноудалена от прямых AH и AC, то есть MK = HM = BH;
б) Поскольку HM = BM/2 = MC/2; и AM - биссектриса угла HAC; то
AH/AC = HM/MC = 1/2; то есть в прямоугольном треугольнике AHC катет равен половине гипотенузы. Поэтому ∠ACH = 30°;
=> ∠HAC = 60°; => ∠HAB = 30°; => ∠ABC = 60°; ∠BAC = 90°;









Вопрос
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.