Аватар
Геометрия, опубликовано 2018-08-22 21:23:50 by Гость

Пожааалуйста помогите! Треугольник ABC – прямоугольный с прямым углом C. Биссектриса угла A пересекает сторону CB в точке K. Известно, что AC = 6, AB = 10. Чему равна площадь треугольника KAB?

Аватар
Ответ оставил Гость


BC= /sqrt{AB^2-AC^2}= /sqrt{10^2-6^2}= /sqrt{100-36}= /sqrt{64}=8
Далее вспоминаем одно определение и одну теоремку:
1) Точка пересечения биссектрисы со стороной треугольника называется основанием биссектрисы.
То есть точка К - основание биссектрисы АК
2) Биссектриса внутреннего угла треугольника делит противоположную сторону (т. е. делит своим основанием противоположную сторону) в отношении, равном отношению двух прилежащих сторон.
Таким образом ВК соотносится к СК, как 10:6, и
BK= /frac{8}{10+6}/cdot10=5
ВК=5 - основание ΔКАВ, АС=6 - высота ΔКАВ
Продолжать нужно?.. )

Вопрос
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.