Геометрия, опубликовано 2018-08-22 09:44:46 by Гость
B9 Цилиндр и конус имеют общее основание и высоту.Угол между высотой и образующей конуса равен 30°.Площадь боковой поверхности цилиндра равна 18 √ 3. Найдите площадь полной поверхности конуса.
Ответ оставил Гость
Цилиндр и конус имеют общее основание и высоту⇒конус вписан в цилиндр.
осевое сечение- равнобедренный треугольник в писан в прямоугольник. основание треугольника =стороне прямоугольника.
высота треугольника делит его на 2 равных прямоугольных треугольника.
катет H- высота треугольника
катет R- (1/2) основания треугольника=радиусу основания конуса и цилиндра
гипотенуза L- образующая конуса
R=(1/2)L, ⇒L=2R
по теореме Пифагора: (2R)²=H²+R², H²=3R²
H=R√3
Sбок.пов.цилиндра=2πRH
18√3=2π*R*R√3, R²=9/π
R=3/√π
L=2*(3/√π), L=6/√π
Sполн. пов. конуса=Sбок+Sосн
Sп.п.конуса=πRL+πR²
S=π(3/√π)*6/√π+π*(3/√π)²
Sполн.пов.конуса=27
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.
