Геометрия, опубликовано 2018-08-22 11:48:56 by Гость
ПОМОГИТЕ, ПРОШУ!!! Докажите, что прямая, проходящая через две точки пересечения двух окружностей, делит пополам отрезок, соединяющий точки касания этих окружностей с их общей касательной.
Ответ оставил Гость
Достаточно немного "повернуть" взгляд на условие, что бы все сразу стало очевидно.
Есть точка, в которой пересекаются прямая, проходящая через точки пересечения окружностей, и их общая касательная.
Можно считать, что из этой точки проведены касательные к обеим окружностям и секущая.
Квадраты длин касательных к обеим окружностям очевидно равны произведению расстояний от этой точки до первой и второй точек пересечения окружностей (ну, есть такая связь между длинами касательной и секущей - квадрат длины касательной равен произведению отрезков секущей). То есть, расстояния от этой точки до точек касания равны между собой. Это всё :).
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.
