Аватар
Геометрия, опубликовано 2018-08-22 23:40:30 by Гость

Найдите радиус окружности описанной около равнобедренного прямоугольного треугольника со стороной 12

Аватар
Ответ оставил Гость

Радиус окружности, описанной около прямоугольного треугольника равен, равен половине гипотенузы. Поскольку треугольник равнобедренный, оба катета нам известны - 12. Гипотенузу можно вычислить с помощью теоремы Пифагора.
Примем: r - радиус; a, b - катеты; c - гипотенуза.

r= /frac{c}{2}= /frac{ /sqrt{a ^{2}+ b^{2}  } }{2}=   /frac{ /sqrt{288} }{2} ≈ 8,48

Вопрос
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.