Аватар
Геометрия, опубликовано 2018-08-22 23:40:34 by Гость

Цилиндр вписанный в прямую призму,в основании которой лежит равносторонняя трапеция с острым углом α и боковой стороной 8 см.Найти площадь полной поверхности призмы,если средняя линия трапеции равна высоте призмы.

Аватар
Ответ оставил Гость

Если цилиндр вписан в призму, то трапеция описана около окружности основания. В описанном четырехугольнике суммы противоположных сторон равны, т.е. сумма оснований равна сумме боковых сторон и равна 16 см.. А средняя линия трапеции равна полусумме оснований, т.е. 8 см. 
 Для нахождения площади трапеции нужно знать ее высоту. Проведем ее и найдем через синус угла α :    h = 8sinα.
 S(полн) = P(осн)*Н +  2S(осн)
P = 16+16 = 32, H = 8, S = 16 * 8sinα/2 = 64sinα.
S(полн) = 32 * 8 + 2*64sinα = 256 + 128sinα.

Вопрос
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.