Геометрия, опубликовано 2018-08-22 23:48:43 by Гость
                    
                    В окружность вписаны правильные четырехугольник и шестиугольник. Чему равно отношение сторон четырехугольника и шестиугольника? С понятным решением,пожалуйста.
        
                Ответ оставил Гость            
            Диаметр данной окружности равен диагонали квадрата. Диагональ равна а√2, след. радиус равен половине диагонали. R= (a√2):2. Такова же длина стороны шестиугольника, потому что радиус описанной окружности шестиугольника равен его стороне. Отношение стороны квадрата и стороны шестиугольника найдем делением стороны квадрата на сторону шестиугольника, т.е. а разделим на дробь (a√2):2) и получим 2а:a√2=2:√2. Сократив дробь на √2, получим √2.
                Не нашли ответа?
                    
                        Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.
                    
                