Геометрия, опубликовано 2018-08-22 00:17:57 by Гость
Центр описанной окружности лежит на высоте равнобедренного треугольника и делит высоту на отрезки,равные 5 см и 13 см. Найдите площадь этого треугольника
Ответ оставил Гость
Высота H к стороне b равна Н b = 2S/b S=(Hb *b)/2
радиус описанной окружности = 13
цент описанной окружности лежит в точке пересечения срединных перпендикуляров
по теореме Пифагора найдем половину стороны b на которую опущена высота H b
0,5b = √(13^2 - 5^2) = √144 = 12 см b = 2*12=24 см
H b = 13+5=18 см
Площадь треугольника равна:
S=(Hb * b)/2 = (18*24)/2 = 18*12=216 кв.см
Ответ: 216 кв.см
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.
