Аватар
Геометрия, опубликовано 2018-08-22 00:27:07 by Гость

В треугольники ВМС стороны ВМ и МС равны, точка А лежит на биссектрисе Мы. Докажите, что АВ=АС

Аватар
Ответ оставил Гость

Чертим равгобедренный треуг ВМС. ВМ-левая воковая сторона, МС-правая боковая сторона, а ВС-основание. с вершины М проводим биссектрису(угол делит по полам), МК к основанию ВС. На МК в любом месте ставим точку А и соединяем с В и С.
Дано: треуг. ВМС, ВМ=МС, МК-биссектриса.
Док-ть: АВ=АС
Док-во:
расм треуг. ВМА и треуг АМС
1) ВМ=МС- по условию задачи
2) 3) МА общая сторона
треуг. ВМА=треуг АМС по 1 признаку равенства треуг. (две стороны и угол между ними)
Из этого следует, что АВ=АС, что и след-ло док-ть

Вопрос
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.