Геометрия, опубликовано 2018-08-22 00:27:40 by Гость
Сравните площади двух треугольников , на которые разделяются данный треугольник его медианой .
Ответ оставил Гость
Пусть дан треугольник АВС и медиана ВМ к стороне АС: АМ=CМ. Опустим также на сторону АС высоту ВН и распишем подробно площади треугольников АВМ и СВМ.
S(ABM)=1/2*BH*AM
S(CBM)=1/2*BH*CM
Т.к. АМ=СМ, то видим, что S(ABM)=S(CBM).
Ответ: площади получаюшихся треугольников равны,
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.
