Аватар
Геометрия, опубликовано 2018-08-22 01:51:09 by Гость

Касательные в точках A и B к окружности с центром O пересекаются под углом 68 градусов. Найти угол ABO.

Аватар
Ответ оставил Гость

Проведем отрезок ОС
Треугольники ACO и BCO - прямоугольные
То есть углы CAO и CBO равны по 90° каждый.
OC - является биссектрисой для угла ACB  следовательно углы ACO и BCO равны 68/2=34
180°=∠OAC+∠ACO+∠COA
∠COA=180°-90°-34=56
Аналогично, для треугольника BCO получим, что ∠COB=56
∠AOB=∠COA+∠COB=56+56=112
Проведем отрезок AB и рассмотрим треугольник ABO.
По теореме о сумме углов треугольника запишем:
180°=∠AOB+∠BAO+∠ABO
180°=112°+∠BAO+∠ABO
ABO равнобедренный треугольник, т.к. OA и OB - радиусы окружности и, поэтому, равны. Следовательно ∠ABO=∠BAO (по свойству равнобедренного треугольника). И получается, что ∠ABO=∠BAO=68/2=34

Вопрос
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.