Аватар
Геометрия, опубликовано 2018-08-22 21:42:25 by Гость

Задача по геометрии: Дано: тре-ник ABC; угол А= 30 градусам; АВ=ВС; М- середина АВ, N- середина ВС; ВТ _|_ AC Найти ТМ+TM

Аватар
Ответ оставил Гость

Рассмотрим треугольник АВТ. Угол ТАВ = 30 град. Катет, лежащий против угла 30 град., равен половине гипотенузы, т.е.ВТ = АМ = МВ. Отсюда треуголник МВТ равнобедренный. Поскольку углы при основании равны, а угол АВТ = 60 град, то и угол ВТМ = углу ТМВ = 120 : 2 = 60 град. Значит треуголник МВТ равносторонний.
В треуголнике АВС углы при основании равны. Тогда в теуголнике ВСТ угол ТВС = 90 - 30 = 60 град.
Треугольники МВТ и NВТ равны, поскольку МВ=ВN, ВТ - общая и углы МВТ и NВТ = 60 град. А значит оба треугольники равносторонние. Отсюда TM + TN = AB = BC

Вопрос
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.