Аватар
Геометрия, опубликовано 2018-08-22 21:44:33 by Гость

Помогите решить задачу по геометрии. 56 б Периметр ромба равен 72, а тангенс одного из углов равен 8√17 делить на 17 . Найдите площадь ромба.

Аватар
Ответ оставил Гость

Tg a = 1/ ctg a
1 + ctg²a = 1 + cos²a / sin²a = (sin² a + cos² a) / sin² a = 1/sin² a
Известно, что тангенс угла ромба tg a = 8√17/17 => ctg a = 17/8/√17 = √17/8
1 + ctg²a = 1 + 17/64 = (64+17) / 64 = 81/64
1/sin²a = 81/64
sin² a = 64/81 
sin a = 8/9
Площадь ромба S = a² * sin α, где а - сторона ромба, α - любой угол
Периметр ромба P = 4*a = 72 по условию.
а = 72/4 = 18
Получим S = a*a*sin α = 18*18*8/9 = 288

Вопрос
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.