Геометрия, опубликовано 2018-08-22 15:37:48 by Гость
В прямоугольном треугольнике катеты относятся как 8:15. Найдите площадь этого треугольника, если площадь круга описанного около него равна 289π см²
Ответ оставил Гость
Прямоугольный ΔАВС - катеты АВ:АС=8:15, откуда АС=15АВ/8.
Площадь описанной окружности Sок=289π.
Центр описанной окружности совпадает с серединой гипотенузы, значит радиус R=ВС/2.
Т.к. Sок=πR²
289π=π*BC²/4
ВС²=1156
По т.Пифагора: АВ²+АС²=ВС²
АВ²+(15АВ/8)²=1156
289АВ²/64=1156
АВ²=256
АВ=16
АС=15*16/8=30
Площадь треугольника Sавс=АВ*АС/2=16*30/2=240
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.
