Геометрия, опубликовано 2018-08-22 15:39:56 by Гость
Существуют ли натуральные числа n такие,что m^2=n^2+2014)
Ответ оставил Гость
Предположим что m и n целые:
Имеем:
m^2-n^2=2014
(m-n)*(m+n)=2014 числа m-n и m+n тоже целые соответственно.
Заметим что 2014 не кратно 4,значит оно не представимо в виде произведения двух четных чисел.
Число 2014 четное,тогда поскольку произведение двух нечётныx чисел число нечётное,то одно из чисеп m-n и m+n четное,а другое нет.
Сумма этих чисел: (m-n)+(m+n)=2*m - четное число. Но сумма четного и нечетного числа число нечетное. То есть мы пришли к противоречию.
Целых решений нет.
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.
