Геометрия, опубликовано 2018-08-22 15:48:39 by Гость
В правильной четырехугольной пирамиде боковые грани наклонены к плоскости основание под углом 30 градусов,а ребро основания равно 6 см .Найдите объем пирамиды.
Ответ оставил Гость
Основание правильной четырёхугольной пирамиды — квадрат, а боковые грани — равные равнобедренные треугольники.
Пирамида SАВСД: основание АВСД (АВ=ВС=СД=АД=6). Вершина пирамиды S проектируется в точку О пересечения диагоналей основания (квадрата) АС и ВД, т.е. SO - это высота пирамиды.
Проведем апофему пирамиды SK - это высота боковой грани.
Двугранный угол SKО равен 30°.
Из прямоугольного ΔSKО найдем SО (OК=АВ/2=6/2=3):
SО=ОК*tg 30=3*1/√3=√3
Площадь основания Sосн=АВ²=6²=36
Объем
V=Sосн*SO/3=36*√3/3=12√3
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.
