Геометрия, опубликовано 2018-08-22 21:50:08 by Гость
Концы отрезка AB удалены от плоскости альфа на расстояние A и B. Найти расстояние от середины AB до плоскости альфа; если данный отрезок а)Не пересекает альфа б)Пересекает альфа С Рисунком если можно
Ответ оставил Гость
А) если начертить прямую АВ не пересек плоскость то проведя расстояния (от А до плоск=А (АА₁) от В до плоск=В(ВВ₁) и соединив А₁В₁ ) мы заметим что образуется четырехугольник причем это трапеция (стороны АА₁ и ВВ₁ параллельны) то СС₁ будет средней линией трапеции а это равно=(А+В)/2
б) имеет два случая: когда середина АВ совпадает с плоскосью и когда не совпадает
мы будем рассмотреть когда середина АВ не совпадает с точкой пересечения АВ с плоск(точка О)
тогда отрезок СС₁ образует новый треуг.(СОС₁) причем угол СС₁О=90
(я взяла отрезок СС₁ на треуг. ВВ₁О)
и угол О общ угол у СОС₁ и ВОВ₁ и угол 90 есть то эти треугольники подобные
то СС₁/ВВ₁=ОС/ОВ
отсюда СС₁=(ОС×ВВ₁)/ОВ
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.
