Геометрия, опубликовано 2018-08-22 16:03:07 by Гость
Отрезки AB и CD пересекаются в точке O, причем OA=OD. На отрезке AD отмечена точка P,так что COP=BOP. Докажите, что точка пересечения медиан треугольника AOD принадлежит отрезку OP.
Ответ оставил Гость
Углы BOD=COA так как они вертикальные⇒угол AOP= углуDOP так как BOP=COP по условию. В треугольнике AOD OP является биссектрисой так как DOP=AOP Треугольник AOD равнобедренный так как AO=OD
Биссектриса опущенная к основанию в равнобедренном треугольнике является так же и медианой. Так как OP медиана то следует что точка пересечения медиан лежит на этом отрезке.
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.
