Геометрия, опубликовано 2018-08-22 16:21:25 by Гость
Сформируйте и докажите теорему, обратную теореме о свойстве касательной.
Ответ оставил Гость
Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания. Если сформулировать обратно, то радиус, проведенный в точку касания, перпендикулярен касательной к окружности.
Предположим, что радиус не перпендикулярен касательной. Тогда точка, к которой проведён радиус, не будет лежать на касательной, а окружность и касательная к ней обязательно должны иметь одну (и только одну) общую точку. Либо, если точка, к которой проведён радиус, будет лежать на прямой, то прямая и окружность будут иметь уже две общие точки и тогда прямая не будет являться касательной, а будет пересекать окружность. Значит радиус, проведенный в точку касания, перпендикулярен касательной к окружности.
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.
