Аватар
Геометрия, опубликовано 2018-08-22 16:41:12 by Гость

Одно из оснований цилиндра является сечением шара, а дру- гое основание принадлежит большому кругу этого шара. Радиус шара равен R . Определите высоту цилиндра, имеющего наибольший объем.

Аватар
Ответ оставил Гость

Обозначим высоту цилиндра Н, а радиус его основания r.
Объём цилиндра V = πr²H.Заменим r² = R² - H².
Тогда V = π(R² - H²)H = πR²H - πH³.
От полученной функции найдём производную по переменной Н и приравняем нулю для нахождения максимума:
V= /pi R^2-3 /pi H^2 = 0
 /pi R^2=3 /pi H^2
Отсюда находим искомую высоту:
H= /frac{R}{ /sqrt{3} } .

Вопрос
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.