Геометрия, опубликовано 2018-08-22 16:47:56 by Гость
Основания равнобедренной трапеции равны 14 и 26, а ее площадь равна 160. Найдите боковую сторону трапеции. Спасибо.
Ответ оставил Гость
Пусть дана трапеция AБСД. Основание АД=26, а основание БС=14. Проведём высоты БЕ и СФ. Тогда ЕФ=БС=14, так как БСФЕ - прямоугольник. Следовательно, АЕ=ФД=(26-14):2=6.
Площадь трапеции равна произведению полусуммы оснований и высоты, следовательно: 160=БЕ*(14+26):2=СФ*(14+26):2, следовательно, БЕ=СФ=8.
Рассмотрим треугольники БЕА и СФД. Они равны по трём сторонам. Следовательно, по теореме Пифагора: АБ^2=БЕ^2+АЕ^2, следовательно АБ=10=СД.
Ответ: 10.
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.
