Аватар
Геометрия, опубликовано 2018-08-22 16:57:13 by Гость

Прямая проходящая через середины диагоналей ас и вд четырехугольника авсд пересекает стороны ав и сд в точках м и к докажите что площади труегольников дсм и акв равны

Аватар
Ответ оставил Гость

Пусть О - середина диагонали BD, а BP и DQ - высоты треугольников KMВ и KMD соответственно. Т.к. прямоугольные треугольники OBP и ODQ равны по гипотенузе и острому углу, то   BP=DQ. Т.е. площади треугольников KMB и KMD равны (у них общее основание MK и равные высоты BP и DQ). Аналогично, равны площади треугольников KMA и KMC. Итак, S_{DCM}=S_{KMD}+S_{KMC}=S_{KMB}+S_{KMA}=S_{AKB}.

Вопрос
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.