Аватар
Геометрия, опубликовано 2018-08-22 17:08:56 by Гость

В прямоугольной трапеции АВСD (ÐВАD = 90°) с основаниями АD = 12 и BC = 8 большая диагональ ВD = 13. Диагонали пересекаются в точке М. а) Докажите, что треугольники ВМС и DМА подобны. б) Найдите площадь треугольника АВМ.

Аватар
Ответ оставил Гость

А) ΔВМС и ΔДМА подобны по 1 признаку:
Значит ВМ/МД=ВС/АД=8/12=2/3
б) Из прямоугольного ΔАВД по т.Пифагора
АВ=√(ВД²-АД²)=√(169-144)=√25=5
Площадь ΔАВД Sавд=АВ*АД/2=5*12/2=30
В ΔАВД и ΔАВМ общая высота, поэтому их площади относятся как основания ВД и ВМ:
Sавм/Sавд=ВМ/ВД=2/5
Sавм=2Sавд/5=2*30/5=12

Вопрос
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.