Геометрия, опубликовано 2018-08-22 17:19:12 by Гость
В правильной шестиугольной призме ABCDEFABCDEF, все ребра которой равны 1, найдите угол между прямыми AB1 и BE1. Ответ напишите в градусах.
Ответ оставил Гость
В этой задаче 2 способа решения:
- 1) векторный,
- 2) геометрический.
2) Для нахождения угла между скрещивающими прямыми надо одну из них перенести параллельно в общую точку.
АВ₁ = √(1²+1²) = √2.
ВЕ₁ = √(2²+1²) = √5.
Перенесём отрезок АВ₁ в точку В - это будет отрезок ВВ₂.
Получаем треугольник ВВ₂Е₁.
Отрезок В₂Е₁ = √((1/2)²+(3*1*cos 30)) = √((1/4)+9*3/4) = √(28/4) = √7.
Отсюда видно, что квадрат В₂Е₁ равен сумме квадратов АВ₁ и ВЕ₁. Поэтому искомый угол равен 90 градусов.
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.
