Аватар
Геометрия, опубликовано 2018-08-22 21:57:55 by Гость

СФЕРА ЗАДАНА УРАВНЕНИЕМ (Х-1)^2 + Y^2 + (Z-2)^2=9 А) НАЙТИ КООРДИНАТЫ ЦЕНТРА И РАДИУС ОКРУЖНОСТИ Б) ОПРЕДЕЛИТЬ ПРИНАДЛЕЖАТ ЛИ ДАННОЙ СФЕРЕ ТОЧКИ А и Б, если А(1;3;-1) б(4;0;2)

Аватар
Ответ оставил Гость

A) уравнение сферы в общем виде:
(х-х0)^2 + (y-y0)^2 + (z-z0)^2 = R^2, где
(x0, y0, z0) - центр, R - радиус.
Значит центр заданной сферы (1; 0; 2), а радиус 3.

б) Подставляем координаты в уравнение и проверяем равенство:
А: (1-1)^2 + 3^2 + (-1-2)^2 = 9
    0+9+9=9
   18=9 - не верно, значит А не принадлежит сфере

В: (4-1)^2 + 0^2 + (2-2)^2 = 9
9+0+0=9
9=9 - верно, значит В принадлежит сфере

Вопрос
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.