Геометрия, опубликовано 2018-08-22 17:53:28 by Гость
Запишите уравнение окружности и прямой проходящей через ее центр и параллельной Оси ординат если А(-1;6) В(-1;-2)- концы диаметра окружности
Ответ оставил Гость
Находим координаты центра окружности как середину отрезка АВ:
хм=(-1+1)/2=0
ум=(6-2)/2=2.
Находим расстояние АМ по формуле расстояния между двумя точками. Это будет радиус окружности:
АМ=корень (((-1-0)^2+(6-2)^2)=корень (91+16)=корень из 17.
Уравнение окружности
(х-х0)^2+(y-y0)^2=R^2.
х^2+(y-2)^2=17.
Уравнение прямой, проходящей через точку М (0.2) параллельно оси Ох: у=2.
А прямая, проходящая вертикально через центр, это будет сама ось Оу: х=0.
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.
