Математика, опубликовано 2018-08-22 23:44:18 by Гость
Задача: Векторы АВ и СД равны. Координаты точки А(3;7), координаты точки Д (1;5).
Ответ оставил Гость
Найдем координаты т. О - середины ВД, О ( 4; 2)
Т. к. хо=(ха+хс) /2, то (-1+хс) /2=4, откуда хс=9,
уо=(уа+ус) /2, то (1+ус) /2=2, откуда ус=3.
Ответ: С (9;3).
2 способ. АВСД - параллелограмм, значит векторы АВ=ДС, координаты АВ (2;6); ДС (хс-7; ус+3),
откуда хс-7=2; хс=9; ус+3=6; ус=3
С (9;3).
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Математика.
