Аватар
Математика, опубликовано 2018-08-22 23:27:36 by Гость

1.Диагонали равнобокой трапеции ABCD пересекаются под прямым углом. BH – высота к большему основанию CD, EF – средняя линия трапеции. а) Докажите, что BH = DH; б) Найдите площадь трапеции, если EF = 5. 2.В правильной треугольной призме ABCA1B1C1 все рёбра равны 1. Точка E – середина ребра AC. а) Постройте сечение призмы плоскостью A1B1E; б) Найдите площадь этого сечения.

Аватар
Ответ оставил Гость

1.а. Пусть О -точка пересечения диагоналей. ΔACD=ΔВCD =>угол ACD = углу CDB, Это два острых угла в прямоугольном ΔОCD => каждый из них 45º. угол CDB = углу DBA =45º..Так как угол АBH=90º, угол DBH=90º -45º=45º. T.o. в прямоугольном ΔBHD  два острых угла 45º, т.е. ΔBHD равнобедренный, т.е. BH = DH
1.b. BD=AC=BH√2
P=BD*AC/2=BH².
P=EF*BH
=>BH²= EF*BH => BH=EF => P=EF²=25

2b. A1E=√(1+0.5²)=(√5)/2.Пусть H -точка пересечениявысоты проведенной из Е с A1B1.
EH=√(A1E²-0.25²=√(5/4-1/16)=(√19)/4
P=EH*(1+0.5)/2=(√19)/4*3/2*1/2=3(√19)/16



















Вопрос
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Математика.