Аватар
Математика, опубликовано 2018-08-22 23:44:03 by Гость

Найти дифференциал функции:y=sqrt(1+x^2)arctg x

Аватар
Ответ оставил Гость

Dy=f(x)dx

f(x)=(/sqrt{1+x^2}*arctgx)=//=(/sqrt{1+x^2})*arctgx+/sqrt{1+x^2}*(arctgx)=//=/frac{1}{2/sqrt{1+x^2}}*(1+x^2)*arctgx+/sqrt{1+x^2}*/frac{1}{1+x^2}}=//=/frac{x*arctgx}{/sqrt{1+x^2}}+/frac{1}{/sqrt{1+x^2}}=/frac{x*arctgx+1}{/sqrt{1+x^2}}////dy=/frac{x*arctgx+1}{/sqrt{1+x^2}}dx

Вопрос
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Математика.