Геометрия, опубликовано 2018-08-22 22:02:45 by Гость
В правильной треугольной пирамиде боковые грани наклонены к основанию под углом 60 градусов; . В эту пирамиду вписан шар радиуса R. 1) Найдите площадь боковой поверхности пирамиды. 2) Найдите длину окружности, по которой поверхность шара касается боковых граней пирамиды.
Ответ оставил Гость
Поскольку грани наклонены к основанию под углом 60 градусов, то для прямоугольного треугольника MOK
tg MKO = MO/KO
tg 60 = MO / (2√3)
Исходя из таблицы значений тригонометрических функций tg 60 = √3
√3 = MO / (2√3)
MO = 6
Таким образом, высота пирамиды равна 6 см.
Объем пирамиды найдем по формуле:
S = 1/3 Sh
S = 1/3 * 36√3 * 6
S = 72√3
Ответ: 72√3
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.
Форма вопроса доступна на